State of the Practice, USDA-FAS Perspective

Agenda

1) USDA Foreign Agricultural Service, Office of Global Analysis, *International Production Assessment Division (IPAD)*
 - Introduction and decision-making process

2) IPAD’s use of Earth Observation products
 - State of the practice and EO product transition

3) Products in a decision-support portfolio
 - arranged by ARL and product type
USDA’s Economic Information System, Official U.S. government estimates of World Agricultural Production

- 18 Commodities, 166 Countries,
- 1,209 Country-Crop Pairs (e.g. Australia-Wheat)
- Crop Analysis:
 - Where is the crop grown?
 - When is the crop harvested?
 - How is the crop doing?
 - How big is the crop? (area, yield, & production)
- What does it mean to food supply?
- What does it mean to agricultural prices?
In FY2017, FAS Office of Global Analysis reviewed the business process for USDA’s Interagency Commodity Estimates Committee (ICEC).
Product Example: MODIS NDVI 8-day for Soybean-Producing Areas of Rio Grande do Sul, Brazil

Northern Rio Grande do Sul
(14% of Brazil soybean production)

NDVI indicates crop growth is delayed and vegetation condition is **below** last year.

Southern Rio Grande do Sul
(2% of Brazil soybean production)

- NDVI indicates crop growth is delayed and vegetation condition is **below** last year.
- Crops planted in Nov/Dec had poor germination/low soil moisture. Development was slow and plants had low vigor (PR SEAB-DERAL). Rain at the end of January was beneficial.

Source: MODIS NDVI 8-day & SPAM-IIASA 2005 Soybean Mask, NASA/GSFC/GIMMS, USDA/FAS/IPAD
Earth Observation Products function when they are in context of other products. This example incorporates several support products including:
- crop statistics
- crop distribution maps
- croplands mask
- precipitation & soil moisture

Crop condition product (EO NDVI) includes several contextual elements including:
- NDVI for this year & last year
- minimum, maximum & mean NDVI
- count of observations vs. expected

Critical: Crop analyst’s input and experience
IPAD Products: World Agricultural Production—production briefs, Commodity Intelligence Reports, Lockup presentations to World Agricultural Outlook Board

Analysis Focus of USDA FAS IPAD
(Sum of Products FY2015 to FY2017)

IPAD Products per Country
- 1 - 6
- 7 - 15
- 16 - 30
- 31 - 50
- 51 - 78
- Outside IPAD domain

Commodities
- Barley
- Rapeseed
- Corn
- Rice
- Cotton
- Sorghum
- Palm Oil
- Soybeans
- Peanuts
- Sunseed
- Wheat

IPAD Products by Commodity
(Sum = 590 for FY2015 to FY2017)
- Soybeans 12%
- Cotton 11%
- Rapeseed 6%
- Rice 9%
- Sunseed 3%
- Palm Oil 2%
- Barley 2%
- Sorghum 1%
- Peanuts 1%
- Wheat 29%
- Corn 24%
State of the Practice, USDA-FAS Perspective

Research to operations—from an operational user’s perspective

Four issues to be managed during transition

1. Identify / implement funding source
 ✓ Transition from research funds to operational funds

2. Identify / implement IT systems responsibility
 ✓ Identify who is responsible for data generation, ingest and visualization (RACI: Responsible, Accountable, Consulted, Informed)

3. Product review / Training
 ✓ Blend of scientific review of observations to product latency to confidence in the product.

4. Data continuity (future satellites)
Transition to full integration and repeated use (ARL 9.0) requires identified budget, IT systems, and product review (including training)

<table>
<thead>
<tr>
<th>Table 1 Short Term Horizon</th>
<th>NASA GIMMS MODIS NDVI</th>
<th>Soil Moisture Palmer Model SMOS @50km</th>
<th>G-REALM</th>
<th>GDA Yield Forecaster (MODIS NDVI@250) croplands mask</th>
<th>SSM/I Yield Forecaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>FAS-IPAD</td>
<td>FAS-IPAD</td>
<td>FAS-IPAD & NASA-ROSES</td>
<td>FAS-IPAD</td>
<td>FAS-IPAD</td>
</tr>
<tr>
<td>IT System</td>
<td>2 external websites; managed by NASA-GIMMS</td>
<td>ftp managed by NASA-GIMMS; ingest/visualization managed by Inuteq/ASRC</td>
<td>ftp managed by ESSIC/SGT; ingest/visualization managed by Inuteq/ASRC</td>
<td>External website; managed by GDA</td>
<td>ftp managed by WeatherPredict; ingest/visualization managed by Inuteq/ASRC</td>
</tr>
<tr>
<td>Product Review</td>
<td>DONE</td>
<td>DONE</td>
<td>DONE</td>
<td>DONE</td>
<td>DONE</td>
</tr>
<tr>
<td>Training</td>
<td>DONE</td>
<td>To increase use</td>
<td>NEEDS</td>
<td>To increase use</td>
<td>To increase use</td>
</tr>
<tr>
<td>Data Continuity</td>
<td>MODIS>> NPP/VIIRS</td>
<td>SMOS>> SMAP</td>
<td>JASON-3>> Sentinel 3a</td>
<td>MODIS>> NPP/VIIRS</td>
<td>SSMI>> tbd</td>
</tr>
<tr>
<td>ARL</td>
<td>9.0</td>
<td>8.5</td>
<td>8.0</td>
<td>7.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Table 2 Medium Horizon

<table>
<thead>
<tr>
<th>Budget</th>
<th>RACI (notional)</th>
<th>IT System (notional)</th>
<th>Product (notional)</th>
<th>Training</th>
<th>Data Continuity</th>
<th>ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS-IPAD</td>
<td>R: NASA-GIMMS R: Inuteq/ASRC A: IPAD</td>
<td>ftp managed by NASA-GIMMS; ingest/visualization managed by Inuteq/ASRC</td>
<td>NEEDS</td>
<td>NEEDS</td>
<td>SMAP>> tbd</td>
<td>6.0</td>
</tr>
<tr>
<td>FAS-IPAD & tbd</td>
<td>R: NASA-GIMMS A: IPAD</td>
<td>2 external websites; managed by NASA-GIMMS</td>
<td>NEEDS</td>
<td>DONE</td>
<td>NPP/VIIRS>> JPSS/VIIRS</td>
<td>5.0</td>
</tr>
<tr>
<td>USAF 557 WW & FAS-IPAD</td>
<td>R: USAF 557 WW R: Inuteq/ASRC A: IPAD</td>
<td>ingest managed by Inuteq/ASRC; IPAD internal database (CADRE) managed by Inuteq/ASRC</td>
<td>NEEDS</td>
<td>DONE</td>
<td>GPM>> tbd</td>
<td>5.0</td>
</tr>
<tr>
<td>NASA</td>
<td>R: NASA-GSFC?</td>
<td>TBD</td>
<td>NEEDS</td>
<td>NEEDS</td>
<td>L-8/ S-2a&b>> Landsat-9 (small satellites?)</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Select USDA-FAS-IPAD Products, by ARL Level—Medium Horizon

Transition from prototype requires external budget, focus on IT systems, and product review (observations>>algorithms>>training)
• X-Axis: NASA’s ARL, 1.0 to 9.0
• Y-Axis: Product type
 - Crop area and crop yield products (e.g. relative crop yield forecasting, flooded area)
 - Crop condition products (e.g. NDVI, soil moisture, CHIRPS, ESI, HLS)
 - Support products (e.g. crop distribution maps, crop calendar, fieldwork data collection, CropSignal—crop stats, precipitation and temperature)
• Z-Axis: Impact (a qualitative assessment)
 - Crop analysts’ will be surveyed about the products and converted into a quantitative score. Impact score is from 100 to 1,200 with 1,200 indicating that the product has a strong impact on IPAD.
Fifteen products (right side) are currently “state of practice.”
ARL on X-axis; Product type on Y-axis; Impact to program on Z-axis.
State of the Practice, USDA-FAS Perspective

Anticipated products—from an operational user’s perspective

Six products (ARL 1.0 to 3.0)

- GDA yield forecaster using VIIRS @350m
- Flooded area estimation using Sentinel-1 (baseline plus change product)
- Yield forecasting using Harmonized Landsat-Sentinel @30m
- Effective field edge boundaries for a global common land unit, using Sentinel-2a&b @10m (machine learning)
- Relative crop area estimation using Landsat-8 & Sentinel-2a&b (machine learning)
- Soil moisture—corrected 2-layer Palmer model using SMAP @13km
1. **Complete transition of research products to operations**
2. **Understand product interactions**

1. How does 10km precip. data *interact* with soil moisture?
2. How does ESI *interact* with NDVI?
3. How does NDVI @30m *interact* with crop models?
4. How does fieldwork *interact* with soil moisture, CHIRPS and ESI?
5. How does effective field edge identification *interact* with crop area estimation?

IPAD products—state of practice (15)
- **Products in development (12)**